MMP13 Regulates Aggressiveness of Pediatric Multiple Myeloma Through VEGF-C.

نویسندگان

  • Lingyun Xu
  • Kai Sun
  • Min Xia
  • Xiaoli Li
  • Yanming Lu
چکیده

BACKGROUND/AIMS Even though the blood and lymphatic vascular systems are both involved in the occurrence of cancer metastases, it is believed that lymphatic system is primarily responsible for the initial metastasis. Nevertheless, the molecular mechanisms underlying lymphangiogenesis of multiple myeloma (MM), especially in pediatric period, have not been clarified. METHODS Here we studied vascular endothelial growth factor C (VEGF-C) and matrix metalloproteinase 13 (MMP13) in pediatric MM patients. We overexpressed or inhibited VEGF-C in MM cells to study their effects on MMP13, and vice versa. A specific inhibitor for PI3k/Akt signaling pathway was used to examine the role of PI3k/Akt signaling in this regulatory axis. RESULTS Both VEGF-C and MMP13 significantly upregulated in MM with lymph-node metastases. A strong correlation between VEGF-C and MMP13 were detected in MM specimen. Using a human MM line 8226, we found that VEGF-C was regulated by MMP13 in MM cells, but not vice versa. Moreover, a specific PI3k/Akt inhibitor significantly abolished the effect of MMP13 on VEGF-C activation. CONCLUSION Since VEGF-C is a well-known growth factor for lymphatic vessels, our data suggest that MMP13 may activate VEGF-C to promote cancer cell metastasis through lymphatic vascular systems in pediatric MM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spongiosa Primary Development: A Biochemical Hypothesis by Turing Patterns Formations

We propose a biochemical model describing the formation of primary spongiosa architecture through a bioregulatory model by metalloproteinase 13 (MMP13) and vascular endothelial growth factor (VEGF). It is assumed that MMP13 regulates cartilage degradation and the VEGF allows vascularization and advances in the ossification front through the presence of osteoblasts. The coupling of this set of m...

متن کامل

CD40 activation induces p53-dependent vascular endothelial growth factor secretion in human multiple myeloma cells.

It was previously demonstrated that p53 status in human multiple myeloma (MM) cells regulates distinct cell cycle responses to CD40 activation. In this study, the production of vascular endothelial growth factor (VEGF) and migration in MM cells triggered by CD40 activation was examined, and the influence of p53 status in regulating this process was determined. Two human MM cell lines that expre...

متن کامل

Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib.

We recently demonstrated that caveolae, vesicular flask-shaped invaginations of the plasma membrane, represent novel therapeutic targets in multiple myeloma. In the present study, we demonstrate that vascular endothelial growth factor (VEGF) triggers Src-dependent phosphorylation of caveolin-1, which is required for p130(Cas) phosphorylation and multiple myeloma cell migration. Conversely, depl...

متن کامل

VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis.

Interleukin-6 (IL-6) triggers multiple myeloma (MM) cell proliferation and protects against apoptosis by up-regulating myeloid cell leukemia 1 (Mcl-1). Vascular endothelial growth factor (VEGF) induces modest proliferation of MM cells and induces IL-6 secretion in a paracrine loop involving MM cells and bone marrow stromal cells. Using murine embryonic fibroblast cell lines as a model (Mcl-1(wt...

متن کامل

The emerging role of angiogenesis inhibitors in hematologic malignancies.

Angiogenesis is an important component of the pathogenesis of hematologic malignancies. A negative prognostic implication of increased angiogenesis has been established for acute and chronic myeloid and lymphocytic leukemias, myeloproliferative diseases, multiple myeloma, non-Hodgkin's lymphoma (NHL), and hairy cell leukemia. An association between the return of increased marrow vascularity to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 2015